Asymmetric segregation of PIE-1 in C. elegans is mediated by two complementary mechanisms that act through separate PIE-1 protein domains.

نویسندگان

  • K J Reese
  • M A Dunn
  • J A Waddle
  • G Seydoux
چکیده

The CCCH finger protein PIE-1 is a regulator of germ cell fate that segregates with the germ lineage in early embryos. At each asymmetric division, PIE-1 is inherited preferentially by the germline daughter and is excluded from the somatic daughter. We show that this asymmetry is regulated at the protein level by two complementary mechanisms. The first acts before cell division to enrich PIE-1 in the cytoplasm destined for the germline daughter. The second acts after cell division to eliminate any PIE-1 left in the somatic daughter. The latter mechanism depends on PIE-1's first CCCH finger (ZF1), which targets PIE-1 for degradation in somatic blastomeres. ZF1s in two other germline proteins, POS-1 and MEX-1, are also degraded in somatic blastomeres, suggesting that localized degradation also acts on these proteins to exclude them from somatic lineages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupling between cytoplasmic concentration gradients through local control of protein mobility in the Caenorhabditis elegans zygote

Cell polarity is characterized by the asymmetric distribution of factors at the cell cortex and in the cytoplasm. Although mechanisms that establish cortical asymmetries have been characterized, less is known about how persistent cytoplasmic asymmetries are generated. During the asymmetric division of the Caenorhabditis elegans zygote, the PAR proteins orchestrate the segregation of the cytopla...

متن کامل

pos-1 encodes a cytoplasmic zinc-finger protein essential for germline specification in C. elegans.

Germ cells arise during early C. elegans embryogenesis from an invariant sequence of asymmetric divisions that separate germ cell precursors from somatic precursors. We show that maternal-effect lethal mutations in the gene pos-1 cause germ cell precursors to inappropriately adopt somatic cell fates. During early embryogenesis, pos-1 mRNA and POS-1 protein are present predominantly in the germ ...

متن کامل

The C. elegans MEX-1 protein is present in germline blastomeres and is a P granule component.

In the nematode Caenorhabditis elegans, germ cells arise from early embryonic cells called germline blastomeres. Cytoplasmic structures called P granules are present in the fertilized egg and are segregated into each of the germline blastomeres during the first few cleavages of the embryo. Mutations in the maternally expressed gene mex-1 disrupt the segregation of P granules, prevent the format...

متن کامل

Spatial and Temporal Controls Target pal-1 Blastomere-Specification Activity to a Single Blastomere Lineage in C. elegans Embryos

The early asymmetric cleavages of Caenorhabditis elegans embryos produce blastomeres with distinct developmental potentials. Here, we show that the caudal-like homeodomain protein PAL-1 is required to specify the somatic identity of one posterior blastomere in the 4 cell embryo. We find that pal-1 activity is sequentially restricted to this blastomere. First, at the 4 cell stage, it is translat...

متن کامل

Inhibition of transcription by the Caenorhabditis elegans germline protein PIE-1: genetic evidence for distinct mechanisms targeting initiation and elongation.

In Caenorhabditis elegans embryos, specification of the germ lineage depends on PIE-1, a maternal protein that blocks mRNA transcription in germline blastomeres. Studies in mammalian cell culture have suggested that PIE-1 inhibits P-TEFb, a kinase that phosphorylates serine 2 in the carboxyl-terminal domain (CTD) repeats of RNA polymerase II during transcriptional elongation. We have tested thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cell

دوره 6 2  شماره 

صفحات  -

تاریخ انتشار 2000